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In this paper, we discuss the solvability of the nonlinear parabolic

systems associated to the nonlinear parabolic equation:
∂bi(x,ui)

∂t
−

div(a(x, t,ui ,∇ui)) − φi(x, t,ui)) + fi(x,u1,u2) = 0, where the function

bi(x,ui) verifies some regularity conditions, the term
(
a(x, t,ui ,∇ui)

)
is

a generalized Leray-Lions operator and φi is a Carathéodory function
assumed to be continuous on ui and satisfy only a growth condition.
The source term fi(t,u1,u2) belongs to L1(Ω× (0,T )).

1 Introduction

Given a bounded-connected open set Ωof RN (N = 2),
with Lipschitz boundary ∂Ω, QT = Ω × (0,T ) is the
generic cylinder of an arbitrary finite hight, T < +∞.
We prove the existence of a renormalized solutions for
the nonlinear parabolic systems:
∂bi (x,ui )

∂t −div(a(x, t,ui ,∇ui))− div(Φi(x, t,ui))

+ fi(x,u1,u2) = 0 in QT , (1.1)

ui = 0 on (0,T )×∂Ω, (1.2)

bi(x,ui)(t = 0) = bi(x,ui,0) in Ω, (1.3)

where i=1,2. Here the vector field a : Ω × R ×
R
N → R

N is a Carathéodory function such that
−div(a(x, t,ui ,∇ui)) is a Leray-lions operator defined
from the Inhomogeneous Musielak-Orlicz-Sobolev
Spcaes W 1,x

0 Lϕ(QT )into its dual W −1,xLψ(QT ). Let bi :
Ω×R→R a Carathéodory function such that for every
x ∈ Ω, bi(x, .) is a strictly increasing C1-function, the
divegential term Φi(x, t,ui) is a Carathéodory function
satisfy only a polynomial growth with respect to the
anisotropic N-function ϕ (see (4.6)), the data u0,i is in
L1(Ω) such that bi(.,u0,i) in L1(Ω) and the source fi is a
Carathéodory function satisfy the assumptions ((4.7)-
(4.10)). When problem ((1.1)) is investigated, there
is a difficulty due to the fact that the data b1(x,u1

0(x))

and b2(x,u2
0(x)) only belong to L1 and the functions

a(x, t,ui ,∇ui),Φi(x, t,ui) and fi(x,u1,u2) do not belong
to (L1

loc(QT ))N in general, so that proving existence
of weak solution seems to be an arduous task, and
we cannot use the Stocks formula in the a priori esti-
mates of the nonlinearity ,Φi(x, t,ui). In order to over-
come this difficulty, we work with the framework of
renormalized solutions (see Definition 3.1). One of
the models of applications of these operators is the
system of Boussinesq:

∂u
∂t

+ (u.∇))u − 2div(µ(θ)ε(u)) +∇p = F(θ) in QT

∂b(θ)
∂t

+u.∇b(θ)−4θ = 2µ(θ)|ε(u)|2 in QT

u(t = 0) = u0, b(θ)(t = 0) = b(θ0) on Ω

u = 0 θ = 0 on ∂Ω× (0,T )

Equation first equation is the motion conservation
equation, the unknowns are the fields of displacement
u : QT → R

N and temperature θ : QT → R, The field
ε(u) = 1

2 (∇u + (∇u)t) is the strain rate tensor.
It is our purpose, in this paper to generalize the

result of ([1], [2], [3]) and we prove the existence of a
renormalized solution of system (1.1).

The plan of the paper is as follows: In Section 2
we give the framework space, in Section 3 and 4 we

*Corresponding Author: A. Aberqi, aberqi ahmed@yahoo.fr

www.astesj.com 180

https://dx.doi.org/10.25046/aj020526

http://www.astesj.com
http://www.astesj.com


A. Aberqi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 5, 180-192 (2017)

give some useful Lemmas and basics assumptions. In
Section 5 we give the definition of a renormalized so-
lution of (1.1), and we establish (Theorem 5.1) the ex-
istence of such a solution.

2 Preliminaries

2.1 Musielak-Orlicz function

Let Ω be an open subset of RN (N ≥ 2), and let ϕ be a
real-valued function defined in Ω×R+ and satisfying
conditions:
Φ1:ϕ(x, .) is an N-function for all x ∈ Ω (i.e.
convex, non-decreasing, continuous, ϕ(x,0) = 0
,ϕ(x,0) > 0 for t > 0, limt→0 supx∈Ω

ϕ(x,t)
t = 0 and

limt→∞ infx∈Ω
ϕ(x,t)
t =∞).

Φ2:ϕ(., t) is a measurable function for all t ≥ 0.
A function ϕ which satisfies the conditions Φ1 and

Φ2 is called a Musielak-Orlicz function.
For a Musielak-Orlicz function ϕ we put ϕx(t) =

ϕ(x, t) and we associate its non-negative reciprocal
function ϕ−1

x , with respect to t, that is

ϕ−1
x (ϕ(x, t)) = ϕ(x,ϕ−1

x (t)) = t

Let ϕ and γ be two Musielak-Orlicz functions, we
say that ϕ dominate γ , and we write γ ≺ ϕ, near infin-
ity (resp.globally) if there exist two positive constants
c and t0 such that for a.e. x ∈Ω
γ(x, t) ≤ ϕ(x,ct) for all t ≥ t0 (resp. for all t ≥ 0 ).
We say that γ grows essentially less rapidly than ϕ at
0(resp. near infinity) and we write γ ≺≺ ϕ, for every
positive constant c, we have
limt→0

(
supx∈Ω

γ(x,ct)
ϕ(x,t)

)
= 0

(resp.limt→∞
(
supx∈Ω

γ(x,ct)
ϕ(x,t)

)
= 0

)
Remark 2.1 [4]. If γ ≺≺ ϕ near infinity,then ∀ε > 0
there exist k(ε) > 0 such that for almost all x ∈ Ω, we
have

γ(x, t) ≤ k(ε)ϕ(x,εt) ∀t ≥ 0

2.2 Musielak-Orlicz space

For a Musielak-Orlicz function ϕ and a measurable
function u : Ω→R, we define the functionnal

%ϕ,Ω(u) =
∫
Ω

ϕ(x, |u(x)|)dx.

The set Kϕ(Ω) = {u : Ω → R mesurable :
%ϕ,Ω(u) <∞} is called the Musielak-Orlicz class . The
Musielak-Orlicz space Lϕ(Ω) is the vector space gen-
erated by Kϕ(Ω); that is, Lϕ(Ω) is the smallest linear
space containing the set Kϕ(Ω). Equivalently

Lϕ(Ω) = {u : Ω→R mesurable : %ϕ,Ω(
u
λ

) <∞, for some λ > 0}

For any Musielak-Orlicz function ϕ, we put
ψ(x,s) = supt≥0(st −ϕ(x,s)).

ψ is called the Musielak-Orlicz function comple-
mentary to ϕ (or conjugate of ϕ) in the sense of

Young with respect to s. We say that a sequence
of function un ∈ Lϕ(Ω) is modular convergent to
u ∈ Lϕ(Ω) if there exists a constant λ > 0 such that
limn→∞ %ϕ,Ω(un−uλ ) = 0

This implies convergence for σ (ΠLϕ ,ΠLψ)[see [5]].
In the space Lϕ(Ω), we define the following two

norms

‖u‖ϕ = inf
{
λ > 0 :

∫
Ω
ϕ(x, |u(x)|

λ )dx ≤ 1
}

which is called the Luxemburg norm, and the so-
called Orlicz norm by

‖|u|‖ϕ,Ω = sup‖v‖ψ≤1

∫
Ω
|u(x)v(x)|dx

where ψ is the Musielak-Orlicz function comple-
mentary to ϕ. These two norms are equivalent [8].
Kϕ(Ω) is a convex subset of Lϕ(Ω). The closure in
Lϕ(Ω) of the set of bounded measurable functions
with compact support in Ω is by denoted Eϕ(Ω).
It is a separable space and (Eϕ(Ω))∗ = Lϕ(Ω). We
have Eϕ(Ω) = Kϕ(Ω), if and only if ϕ satisfies the
∆2−condition for large values of t or for all values of
t, according to whether Ω has finite measure or not.

We define

W 1Lϕ(Ω) = {u ∈ Lϕ(Ω) :Dαu ∈ Lϕ(Ω), ∀α ≤ 1}
W 1Eϕ(Ω) = {u ∈ Eϕ(Ω) :Dαu ∈ Eϕ(Ω), ∀α ≤ 1}

where α = (α1, ...,αN ),|α| = |α1| + ... + |αN | and : Dαu
denote the distributional derivatives. The space
W 1Lϕ(Ω) is called the Musielak-Orlicz-Sobolev space.
Let
%ϕ,Ω(u) =

∑
|α|≤1 %ϕ,Ω(Dαu) and ‖u‖1ϕ,Ω = inf{λ > 0 :

%ϕ,Ω(uλ ) ≤ 1} foru ∈W 1Lϕ(Ω).
These functionals are convex modular and

a norm on W 1Lϕ(Ω), respectively. Then pair
(W 1Lϕ(Ω),‖u‖1ϕ,Ω) is a Banach space if ϕ satisfies the
following condition [6].

There exists a constant c > 0 such that inf
x∈Ω

ϕ(x,1) > c

The space W 1Lϕ(Ω) is identified to a subspace of
the product

∏
α≤1Lϕ(Ω) =

∏
Lϕ We denote by D(Ω)

the Schwartz space of infinitely smooth functions
with compact support in Ω and by D(Ω) the restric-
tion of D(R) on Ω. The space W 1

0 Lϕ(Ω) is defined as
the σ (ΠLϕ ,ΠEψ) closure of D(Ω) inW 1Lϕ(Ω) and the
space W 1

0 Eϕ(Ω) as the(norm) closure of the Schwartz
space D(Ω) in W 1Lϕ(Ω). For two complementary
Musielak-Orlicz functions ϕ and ψ, we have (See [7]).

• The Young inequality:

st ≤ ϕ(x,s) +ψ(x, t) for all s, t ≥ 0 , x ∈Ω.

• The Hölder inequality

∣∣∣ ∫
Ω
u(x)v(x)dx

∣∣∣ ≤ ‖u‖ϕ,Ω‖|v|‖ψ,Ω for all
u ∈ Lϕ(Ω),v ∈ Lψ(Ω)
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We say that a sequence of functions un converges to
u for the modular convergence in W 1Lϕ(Ω) (respec-
tively in W 1

0 Lϕ(Ω)) if, for some λ > 0.

lim
n→∞

%ϕ,Ω
(un −u

λ

)
= 0

The following spaces of distributions will also be
used

W −1Lψ(Ω) =
{
f ∈ D

′
(Ω) : f =

∑
α≤1

(−1)αDαfα

where fα ∈ Lψ(Ω)
}

and

W −1Eψ(Ω) =
{
f ∈ D

′
(Ω) : f =

∑
α≤1

(−1)αDαfα

where fα ∈ Eψ(Ω)
}

2.3 Inhomogeneous Musielak-Orlicz-
Sobolev spcaes:

Let Ω be a bounded Lipschitz domain in R
N and let

Q = Ω×]0,T [ with some given T > 0. let ϕ be a
Musielak-Orlicz function.For each α ∈
NN , denote by Dαx the distributional derivative on QT
of order α with respect to the variable x ∈
RN . The inhomogeneous Musielak-Orlicz-Sovolev
spaces of order 1 are defined as follows

W 1,xLϕ(Q) =
{
u ∈ Lϕ(Q) : ∀|α| ≤ 1, Dαx u ∈ Lϕ(Q)

}
W 1,xEϕ(Q) =

{
u ∈ Eϕ(Q) : ∀|α| ≤ 1, Dαx u ∈ Eϕ(Q)

}
The last is a subspace of the first one, and both are
Banach spaces under the norm

‖u‖ =
∑
|α|≤m

‖Dαx u‖ϕ,Q

We can easily show that they form a complemen-
tary system when Ω is a Lipschitz domain. These
spaces are considered as subspaces of the product
space ΠLϕ(Q) which has (N + 1) copies. We shall
also consider the weak topologies σ (ΠLϕ ,ΠEψ) and
σ (ΠLϕ ,ΠLψ). If u ∈ W 1,xLϕ(Q) then the function
: t 7→ u(t) = u(t, .) is defined on (0,T ) with val-
ues in W 1Lϕ(Ω). If, further, u ∈ W 1,xEϕ(Q) then
this function is a W 1Eϕ(Ω)-valued and is strongly
measurable. Furthermore the following imbed-
ding holds: W 1,xEϕ(Q) ⊂ L1(0,T ;W 1Eϕ(Ω)). The
space W 1,xLϕ(Q) is not in general separable, if u ∈
W 1,xLϕ(Q), we can not conclude that the function
u(t) is measurable on (0,T ). However, the scalar
function t 7→ u(t) = ‖u(t)‖ϕ,Ω is in L1(0,T ). The

space W 1,x
0 Eϕ(Q) is defined as the (norm) closure in

W 1,xEϕ(Q) of D(Ω). We can easily show that when
Ω is a Lipschitz domain then each element u of the
closure of D(Ω) with respect of the weak∗ topology

σ (ΠLϕ ,ΠEψ) is limit, in W 1,xLϕ(Q), of some subse-
quence (ui) ∈ D(Ω) for the modular convergence, i.e.
there exists λ > 0 such that for all |α| ≤ 1,∫

Q
ϕ(x, (

Dαx ui −Dαx u
λ

)dxdt→ 0 as i→∞

, this implies that (ui) converge to u in W 1,xLϕ(Q) for
the weak topology σ (ΠLϕ ,ΠLψ). Consequently

D(Q)σ (ΠLϕ ,ΠEψ) =D(Q)σ (ΠLϕ ,ΠLψ)

, this space will be denoted by W 1,x
0 Lϕ(Q). Further-

moreW 1,x
0 Eϕ(Q) =W 1,x

0 Lϕ(Q)∩ΠEϕ . We have the fol-
lowing complementary system F being the dual space
of W 1,x

0 Eϕ(Q). It is also, except for an isomorphism,

the quotient of ΠLψ by the polar set W 1,x
0 Eϕ(Q)⊥, and

will be denoted by F =W 1,xLψ(Q) and it is shown that
this space will be equipped with the usual quotient

norm
where the inf is taken on all possible decomposi-

tions
The space F0 is then given by F0 =W −1,xEψ(Q).

Lemma 2.1 [4]. Let Ω be a bounded Lipschitz domain
in R

N and let ϕ and ψ be two complementary Musielak-
Orlicz functions which satisfy the following conditions:

• There exists a constant c > 0 such that

inf
x∈Ω

ϕ(x,1) > c (2.1)

• ∃A > 0 such that for all x,y ∈ Ω with |x − y| ≤ 1
2 ,

we have

ϕ(x, t)
ϕ(y, t)

≤ t

(
A

log( 1
|x−y| )

)
for all t ≥ 1. (2.2)

• ∫
Ω

ϕ(y,1)dx <∞ (2.3)

•

∃C > 0 such that ψ(y, t) ≤ C a.e. in Ω

(2.4)

Under this assumptions D(Ω) is dense in Lϕ(Ω) with
respect to the modular topology, D(Ω) is dense in
W 1

0 Lϕ(Ω) for the modular convergence and D(Ω) is
dense in W 1

0 Lϕ(Ω) for the modular convergence.
Consequently, the action of a distribution S in

W −1Lψ(Ω) on an element u of W 1
0 Lϕ(Ω) is well de-

fined. It will be denoted by < S,u >.
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2.4 Truncation Operator

Tk , k > 0, denotes the truncation function at level k de-
fined on R by Tk(r) = max(−k,min(k, r)). The following
abstract lemmas will be applied to the truncation op-
erators.

Lemma 2.2 [4]. Let F : R → R be uniformly Lips-
chitzian,with F(0) = 0. Let ϕ be an Musielak-Orlicz func-
tion and let u ∈ W 1

0 Lϕ(Ω)(resp.u ∈ W 1Eϕ(Ω)). Then
F(u) ∈ W 1Lϕ(Ω)(resp.u ∈ W 1

0 Eϕ(Ω)).Moreover, if the
set of discontinuity points D of F′ is finite,then

∂
∂xi

F(u) =
{
F′(x) ∂u∂xi a.e. in {x ∈Ω; u(x) <D}
0 a.e. in {x ∈Ω; u(x) ∈D}

Lemma 2.3 Suppose that Ω satisfies the segment prop-
erty and let u ∈W 1

0 Lϕ(Ω). Then, there exists a sequence
un ∈ D(Ω) such that

un→ u for modular convergence in W 1
0 Lϕ(Ω).

Furthermore, if u ∈ W 1
0 Lϕ(Ω) ∩ L∞(Ω) then ‖un‖∞ ≤

(N + 1)‖u‖∞.

Let Ω be an open subset of R
N and let ϕ be a

Musielak-Orlicz function satisfying :∫ 1

0

ϕ−1
x (t)

t
N+1
N

dt =∞ a.e. x ∈Ω (2.5)

and the conditions of Lemma 2.1. We may assume
without loss of generality that∫ 1

0

ϕ−1
x (t)

t
N+1
N

dt <∞ a.e. x ∈Ω (2.6)

Define a function ϕ∗ : Ω × [0,∞) by ϕ∗(x,s) =∫ s
0
ϕ−1
x (t)

t
N+1
N
dt x ∈Ω and s ∈ [0,∞).

ϕ∗its called the Sobolev conjugate function of ϕ (see
[1] for the case of Orlicz function).

Theorem 2.1 Let Ω be a bounded Lipschitz domain and
let ϕ be a Musielak-Orlicz function satisfying 2.5,2.6 and
the conditions of Lemma 2.1. Then

W 1
0 Lϕ(Ω) ↪→ Lϕ∗(Ω)

where ϕ∗ is the Sobolev conjugate function of ϕ. More-
over, if φ is any Musielak-Orlicz function increasing es-
sentially more slowly than ϕ∗ near infinity, then the
imbedding

W 1
0 Lϕ(Ω) ↪→ Lφ(Ω)

is compact

Corollary 2.1 Under the same assumptions of theorem
5.1, we have

W 1
0 Lϕ(Ω) ↪→↪→ Lϕ(Ω)

Lemma 2.4 If a sequence un un ∈ Lϕ(Ω) converges a.e.
to u and if un remains bounded in Lϕ(Ω), then u ∈ Lϕ(Ω)
and un⇀u for σ (Lϕ(Ω),Eψ(Ω)).

Lemma 2.5 Let un,u ∈ Lϕ(Ω). If un → u with re-
spect to the modular convergence, then un ⇀ u for
σ (Lϕ(Ω),Lψ(Ω)).

See ([8]).

3 Technical lemma

Lemma 3.1 Under the assumptions of lemma 2.1, and
by assuming that ϕ(x, t) decreases with respect to one of
coordinate of x, there exists a constant c1 > 0 which de-
pends only on Ω such that∫

Ω

ϕ(x, |u|)dx ≤
∫
Ω

ϕ(x,c1|∇u|)dx (3.1)

Theorem 3.1 Let Ω be a bounded Lipschitz domain and
let ϕ be a Musielak-Orlicz function satisfying the same
conditions of Theorem 5.1. Then there exists a constant
λ > 0 such that

‖u‖ϕ ≤ λ‖∇u‖ϕ , ∀ ∈W 1
0 Lϕ(Ω)

4 Essential assumptions

Let Ω be an open subset of RN (N ≥ 2) satisfying the
segment property,and let ϕ and γ be two Musielak-
Orlicz functions such that ϕ and its complementary
ψ satisfies conditions of Lemma 2.1 and γ ≺≺ ϕ.

bi : Ω×R→R

is a Carathéodory function such that for every x ∈Ω,
(4.1)

bi(x, .) is a strictly increasing C1(R)-function and bi ∈
L∞(Ω ×R) with bi(x,0) = 0. Next for any k > 0, there
exists a constant λik > 0 and functions Aik ∈ L

∞(Ω) and
Bik ∈ Lϕ(Ω) such that:

λik ≤
∂bi (x,s)
∂s ≤ Aik(x) and

∣∣∣∣∇x(∂bi (x,s)∂s

)∣∣∣∣ ≤ Bik(x)

a.e. x ∈Ω and ∀ |s| ≤ k. (4.2)

A : D(A) ⊂ W 1
0 Lϕ(QT ) → W −1Lψ(QT ) defined by

A(u) = −diva(x, t,u,∇u),where a : Q ×R×RN → R
N is

Carathéodory function such that for a.e. x ∈Ω and for
all s ∈R,ξ,ξ∗ ∈RN ,ξ , ξ∗

(A1) : |a(x, t, s,ξ)| ≤ β(c(x) + ψ−1
x (γ(x,ν1|s|)) +

ψ−1
x (ϕ(x,ν2|ξ |))),

β > 0, c(x) ∈ Eψ(Ω), (4.3)

(A2) : (a(x, t, s,ξ)− a(x,s,ξ∗)(ξ − ξ∗) > 0, (4.4)

(A3) : a(x, t, s,ξ).ξ ≥ αϕ(x, |ξ |). (4.5)

Φ(x,s,ξ) : Ω×IR×IRN → IRN is a Carathéodory func-
tion such that

|Φi(x, t, s)| ≤ ψ−1
x ϕ(x, |s|), (4.6)

fi : Ω×R×R→R is a Carathéodory function with

f1(x,0, s) = f2(x,s,0) = 0 a.e. x ∈Ω,∀s ∈R. (4.7)
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and for almost every x ∈Ω, for every s1, s2 ∈R,

sign(si)fi(x,s1, s2) ≥ 0. (4.8)

The growth assumptions on fi are as follows: For each
K > 0, there exists σK > 0 and a function FK in L1(Ω)
such that

|f1(x,s1, s2)| ≤ FK (x) + σK |b2(x,s2)| (4.9)

a.e. in Ω, for all s1 such that |s1| ≤ K , for all s2 ∈R. For
each K > 0, there exists λK > 0 and a function GK in
L1(Ω) such that

|f2(x,s1, s2)| ≤ GK (x) +λK |b1(x,s1)|, (4.10)

for almost every x ∈Ω, for every s2 such that |s2| ≤ K ,
and for every s1 ∈R.
Finally, we assume the following condition on the ini-
tial data ui,0: for i=1,2.

ui,0 is a measurable function such that bi(.,ui,0) ∈ L1(Ω),
(4.11)

In this paper, for K > 0, we denote by TK : r 7→
min(K,max(r,−K)) the truncation function at height
K . For any measurable subset E of QT , we denote by
meas(E) the Lebesgue measure of E. For any measur-
able function v defined on Q and for any real number
s,χ{v<s} (respectively, χ{v=s},χ{v>s}) denote the charac-
teristic function of the set {(x, t) ∈ QT ; v(x, t) < s} (re-
spectively, {(x, t) ∈ QT ;v(x, t) = s}, {(x, t) ∈ QT ;v(x, t) >
s}).

Definition 4.1 A couple of functions (u1,u2) defined on
Q is called a renormalized solution of (4.1)-(4.11)if for
i = 1,2 the function ui satisfies

TK (ui) ∈W
1,x
0 Lϕ(QT ) and bi(x,ui) ∈ L∞(0,T ;L1(Ω)),

(4.12)∫
{ m≤|ui |≤m+1}

a(x, t,ui ,∇ui)∇ui dxdt→ 0 as m→ +∞,

(4.13)
For every function S in W 2,∞(R) which is piecewise C1

and such that S ′ has a compact support,we have

∂Bi,S (x,ui)
∂t

− div(S ′(ui)a(x, t,ui ,∇ui))

+S ′′(ui)a(x, t,ui ,∇ui)∇ui

+div(S ′(ui)φi(x, t,ui))− S ′′(ui)φi(x, t,ui)∇ui

+ fi(x,u1,u2)S ′(ui) = 0, (4.14)

Bi,S (x,ui)(t = 0) = Bi,S (x,ui,0) in Ω, (4.15)

where Bi,S (r) =
∫ r

0 b
′
i(x,s)S

′(s)ds.

Due to (4.12), each term in (4.14) has a meaning in
W −1,xLψ(QT ) +L1(QT ).
Indeed, if K such that suppS ⊂ [−K,K], the following
identifications are made in (4.14)

• Bi,S (x,ui) ∈ L∞(QT ), since |Bi,S (x,ui)| ≤
K‖AiK‖L∞(Ω)‖S ′‖L∞(R)

• S ′(ui)a(x, t,ui ,∇ui) can be identified with
S ′(ui)a(x, t,TK (ui),∇TK (ui)) a.e. in QT . Since
indeed |TK (ui)| ≤ K a.e. in QT , . As a conse-
quence of (4.3) , (4.12) and S ′(ui) ∈ L∞(QT ) , it
follows that

S ′(ui)a(x,TK (ui),∇TK (ui)) ∈ (Lψ(QT ))N .

• S ′(ui)a(x, t,ui ,∇ui)∇ui can be identified with
S ′(ui)a(x, t,TK (ui),∇TK (ui))∇TK (ui) a.e. in
QT .with (4.2) and (4.12) it has

S ′(ui)a(x, t,TK (ui),∇TK (ui))∇TK (ui) ∈ L1(QT )

• S ′(ui)Φi(ui) and S ′′(ui)Φi(ui)∇ui respec-
tively identify with S ′(ui)Φi(TK (ui)) and
S ′′(ui)Φ(TK (ui))∇TK (ui). In view of the prop-
erties of S and (4.6), the functions S ′ ,S ′′ and
Φ ◦ TK are bounded on R so that (4.12) im-
plies that S ′(ui)Φi(TK (ui)) ∈ (L∞(QT ))N and
S ′′(ui)Φi(TK (ui))∇TK (ui) ∈ (Lψ(QT ))N .

• S ′(ui)fi(x,u1,u2) identifies with S ′(ui)f1(x,TK (u1),u2)
a.e. in QT
(or S ′(ui)f2(x,u1,TK (u2)) a.e. in QT ). In-
deed, since |TK (ui)| ≤ K a.e. in QT , assump-
tions (4.9) and (4.10) and using (4.12) and of
S ′(ui) ∈ L∞(Q), one has

S ′(u1)f1(x,TK (u1),u2) ∈ L1(QT )

and S ′(u2)f2(x,u1,TK (u2)) ∈ L1(QT ).

As consequence, (4.14) takes place in D ′(QT )
and that

∂Bi,S (x,ui)
∂t

∈W −1,xLψ(QT ) +L1(QT ). (4.16)

Due to the properties of S and (4.2)

Bi,S (x,ui) ∈W
1,x
0 Lϕ(QT ). (4.17)

Moreover (4.16) and (4.17) implies that
Bi,S (x,ui) ∈ C0([0,T ],L1(Ω)) so that the initial
condition (4.15) makes sense.

5 Existence result

We shall prove the following existence theorem

Theorem 5.1 Assume that (4.1)-(4.11) hold true. There
at least a renormalized solution (u1,u2) of Problem (1.1).

We divide the prof in 5 steps.
Step 1: Approximate problem.
Let us introduce the following regularization of the
data: for n > 0 and i = 1,2

bi,n(x,s) = bi(x,Tn(s)) +
1
n
s ∀s ∈R, (5.1)

an(x, t, s,ξ) = a(x, t,Tn(s),ξ) a.e. in Ω,∀s ∈R,∀ξ ∈RN ,
(5.2)
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Φi,n(x, t, s) = Φi,n(x, t,Tn(s)) a.e. (x, t) ∈QT , ∀s ∈ IR.
(5.3)

f1,n(x,s1, s2) = f1(x,Tn(s1), s2) a.e. in Ω,∀s1, s2 ∈R,
(5.4)

f2,n(x,s1, s2) = f2(x,s1,Tn(s2)) a.e. in Ω,∀s1, s2 ∈R,
(5.5)

ui,0n ∈ C∞0 (Ω),bi,n(x,ui,0n)→ bi(x,ui,0) inL1(Ω)

as n tends to +∞ (5.6)

Let us now consider the regularized problem
∂bi,n(x,ui,n)

∂t −div(an(x,ui,n,∇ui,n))− div(Φi,n(x, t,ui,n))

+ fi,n(x,u1,n,u2,n) = 0 in QT , (5.7)

ui,n = 0 on (0,T )×∂Ω, (5.8)

bi,n(x,ui,n)(t = 0) = bi,n(x,ui,0n) in Ω. (5.9)

In view of (5.1), for i = 1,2, we have

∂bi,n(x,s)
∂s

≥ 1
n
, |bi,n(x,s)| ≤max

|s|≤n
|bi(x,s)|+ 1 ∀s ∈R,

In view of (4.9)-(4.10), f1,n and f2,n satisfy: There ex-
ists Fn ∈ L1(Ω),Gn ∈ L1(Ω) and σn > 0,λn > 0, such
that
|f1,n(x,s1, s2)| ≤ Fn(x) + σn max|s|≤n |bi(x,s)|

a.e. in x ∈Ω,∀s1, s2 ∈R,

|f2,n(x,s1, s2)| ≤ Gn(x) +λn max|s|≤n |bi(x,s)|
a.e. in x ∈ Ω,∀s1, s2 ∈ R. As a consequence, proving
the existence of a weak solution ui,n ∈W

1,x
0 Lϕ(QT ) of

(5.7)-(5.9) is an easy task (see e.g. [9]).
Step2:A priori estimates.

Let t ∈ (0,T ) and using Tk(ui,n)χ(0,t) as a test func-
tion in problem (5.7), we get:∫
Ω
Bni,k(x,ui,n(t))dx+

∫
Qt
an(x, t,ui,n,∇ui,n)∇Tk(ui,n)dxdt

+
∫
Qt

φi,n(x, t,ui,n)∇Tk(ui,n)dxdt (5.10)

+
∫
Qt

fi,nTk(ui,n)dxdt ≤
∫
Ω

Bni,k(x,ui,0n)dx,

where Bni,k(x,r) =
∫ r

0

∂bi,n(x,s)
∂s

Tk(s)ds.

Due to definition of Bni,k we have:∫
Ω

Bni,k(x,ui,n(t))dx ≥ λn
2

∫
Ω

|Tk(ui,n)|2 dx, ∀k > 0,

(5.11)
and

0 ≤
∫
Ω

Bni,k(x,ui,0n)dx ≤ k
∫
Ω

|bi,n(x,ui,0n)|dx (5.12)

≤ k||bi(x,ui,0)||L1(Ω), ∀k > 0.

In view of (4.8), we have
∫
Qt
fi,nTk(ui,n)dxdt ≥ 0 Also,

we obtain with Young inequality:∫
Qt

φi,n(x, t,ui,n)∇Tk(ui,n)dxdt

=
∫
{|ui,n |≤k}

φi,n(x, t,ui,n)∇Tk(ui,n)dxdt

≤
∫
{|ui,n |≤k}

ψ(x,
1

αi0
φi,n(x, t,ui,n))dxdt

+
∫
{|ui,n |≤k}

ϕ(x,αi0∇Tk(ui,n))dxdt

≤
∫
{|ui,n |≤k}

ψ(x,
1

αi0
ψ−1
x ϕ(x, |k|))dxdt

+
∫
{|ui,n |≤k}

ϕ(x,αi0∇Tk(ui,n)dxdt

≤
∫
{|ui,n |≤k}

ψ(x,
1

αi0
ψ−1
x ϕ(x, |k|))dxdt

+
∫
{|ui,n |≤k}

ϕ(x,αi0∇Tk(ui,n)dxdt

then ∫
Qt

φi,n(x, t,Tk(ui,n))∇Tk(ui,n)dxdt

≤ Ci,k +αi0

∫
Qt

ϕ(x,∇Tk(ui,n))dxdt (5.13)

We conclude that

λ
2

∫
Ω

|Tk(ui,n)|2 dx+αi
∫
Qt

ϕ(x,∇Tk(ui,n)dxdt

≤ αi0
∫
Qt

ϕ(x,∇Tk(ui,n))dt dx+Ci,k + k||bi(x,ui,0n)||L1(Ω)

Then

λ
2

∫
Ω

|Tk(ui,n)|2 dx+(αi−αi0)
∫
Qt

ϕ(x,∇Tk(ui,n))dt dx ≤ Ci .k

Choosing αi0 such that

0 < αi0 <min(1,αi)

we get ∫
Qt

ϕ(x,∇Tk(ui,n))dxdt ≤ Ci .k (5.14)

Then, by (5.14), we conclude that Tk(ui,n) is bounded
in W 1,xLϕ(QT ) independently of n and for any k ≥ 0,
so there exists a subsequence still denoted by un such
that

Tk(ui,n)→ ψi,k (5.15)

weakly in W 1,x
0 Lϕ(QT ) for σ (ΠLϕ ,ΠEψ) strongly

in Eϕ(QT ) and a.e in QT .
Since Lemma(3.1)and (5.14), we get also,

ϕ(x,k) meas
{
{|ui,n| > k} ∩BR × [0,T ]

}
≤

∫ T

0

∫
{|ui,n |>k}∩BR

ϕ(x,Tk(ui,n))dxdt

≤
∫
QT

ϕ(x,Tk(ui,n))dxdt
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≤ diamQT
∫
QT

ϕ(x,∇Tk(ui,n))dxdt

Then

meas
{
{|ui,n| > k} ∩BR × [0,T ]

}
≤ diamQT .Ci .k

ϕ(x,k)

Which implies that:

lim
k→+∞

meas
{
{|ui,n| > k} ∩ BR × [0,T ]

}
= 0. uniformly

with respect to n.
Now we turn to prove the almost every con-
vergence of ui,n , bi,n(x,ui,n) and convergence of
ai,n(x, t,Tk(ui,n),∇Tk(ui,n)).

Proposition 5.1 Let ui,n be a solution of the approxi-
mate problem, then:

ui,n→ ui a.e in QT . (5.16)

bi,n(x,ui,n)→ bi(x,ui) a.e in QT

bi(x,ui) ∈ L∞(0,T ,L1(Ω)). (5.17)

an(x, t,Tk(ui,n),∇Tk(ui,n))⇀Xi,k

in (Lψ(QT ))N for σ (ΠLψ ,ΠEϕ) (5.18)

for some Xi,k ∈ (Lψ(QT ))N

lim
m→+∞

lim
n→+∞

∫
m≤|ui,n |≤m+1

ai(x, t,ui,n,∇ui,n)∇ui,ndxdt = 0

(5.19)

Proof of (5.16) and (5.17):
Consider now a function non decreasing gk ∈ C2(IR)
such that gk(s) = s for |s| ≤ k

2 and gk(s) = k for |s| ≥ k.
Multiplying the approximate equation by g ′k(ui,n), we
get

∂Bi,nk,g (x,ui,n)

∂t
− div

(
an(x, t,ui,n,∇ui,n)g ′k(ui,n)

)
+ an(x, t,ui,n,∇ui,n)g ′′k (ui,n)∇ui,n (5.20)

+ div
(
φi,n(x, t,ui,n)g ′k(ui,n)

)
− g ′′k (ui,n)φi,n(x, t,ui,n)∇ui,n

+fi,ng
′
k(un) = 0 in D

′
(QT )

where Bi,nk,g (x,z) =
∫ z

0

∂bi,n(x,s)
∂s

g ′k(s)ds.

Using (5.20),we can deduce that gk(ui,n) is bounded

in W 1,x
0 Lϕ(QT ) and

∂Bi,nk,g (x,ui,n)

∂t is bounded in L1(QT ) +
W −1,xLψ(QT ) independently of n.
thanks to (4.6) and properties of gk , it follows that

|
∫
QT

φi,n(x, t,un)g ′k(ui,n)dxdt|

≤ ‖g ′k‖∞
∫
QT

ci(x, t)ψ
−1ϕ(x,Tk(ui,n))dxdt

≤ ‖g ′k‖∞
(
ψ−1ϕ(x,k))

∫
QT

ci(x, t)dxdt
)
≤ C1

i,k

By (5.13), we get

|
∫
QT

g ′′k (ui,n)φi,n(x, t,ui,n)∇ui,ndxdt|

≤ ‖g ′k‖∞
(
Ci,k + ci0

∫
QT

ψ(x,∇Tk(ui,n))dxdt
)
≤ C2

i,k

where C1
i,k and C2

i,k constants independently of n.

we conclude that ∂gk(ui,n)
∂t is bounded in L1(QT ) +

W −1,xLψ(QT ) for k < n. which implies that gk(ui,n) is
compact in L1(QT ).Due to the choice of gk , we con-
clude that for each k,the sequence Tk(ui,n) converges
almost everywhere in QT , which implies that the se-
quence ui,n converge almost everywhere to some mea-
surable function ui in QT .
Then by the same argument in [9], we have

ui,n→ ui a.e. QT , (5.21)

where ui is a measurable function defined on QT . and

bi,n(x,ui,n)→ bi(x,ui) a.e. in QT

by (5.15) and (5.21) we have

Tk(ui,n)→ Tk(ui) (5.22)

weakly in W 1,x
0 Lϕ(QT ) for σ (ΠLϕ ,ΠEψ) strongly in

Eϕ(QT ) and a.e in QT .
We now show that bi(x,ui) ∈ L∞(0,T ;L1(Ω)). Indeed
using 1

εTε(ui,n) as a test function in (5.7),

1
ε

∫
Ω

bεi,n(x,ui,n)(t)dx+
1
ε

∫
QT

an(x,ui,n,∇ui,n)∇Tε(ui,n)dxdt

− 1
ε

∫
QT

Φi,n(x, t,ui,n)∇Tε(ui,n)dxdt +
1
ε

∫
QT

fi,n(x,u1,n,u2,n)Tε(ui,n)

=
1
ε

∫
Ω

bεi,n(x,ui,0n)dx,

(5.23)
for almost any t in (0,T ). Where, bεi,n(r) =∫ r

0 b
′
i,n(s)Tε(s)ds. Since an satisfies (4.5) and fi,n satis-

fies (4.8), we get∫
Ω
bεi,n(x,ui,n)(t)dx ≤

∫
QT

Φi,n(x, t,ui,n)∇Tε(ui,n)dxdt

+
∫
Ω

bεi,n(x,ui,0n)dx, (5.24)

By Young inequality and (4.6), we get∫
QT

Φi,n(x, t,ui,n)∇Tε(ui,n)dxdt ≤
∫
|ui,n |≤ε

ψ(x,Φi,n(x, t,ui,n))dxdt

+
∫
|ui,n |≤ε

ϕ(x,∇Tε(ui,n))dxdt

≤ εψ(x,
α

λ+ 1
ψ−1ϕ(x,1)).meas(QT )+

∫
|ui,n |≤ε

(ϕ(x,∇Tε(ui,n))dxdt

(5.25)
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Using the Lebesgue’s Theorem and ϕ(x,∇Tε(ui,n)) ∈
W 1,x

0 L(QT ) in second term of the left hand side of the
(5.25) and Letting ε→ 0 in (5.24)we obtain∫

Ω

|bi,n(x,ui,n)(t)|dx ≤ ‖bi,n(x,ui,0n)‖L1(Ω) (5.26)

for almost t ∈ (0,T ). thanks to (5.6) , (5.16), and
passing to the limit-inf in (5.26), we obtain bi(x,ui) ∈
L∞(0,T ;L1(Ω)). Proof of (5.18) :
Following the same way in([10]),we deduce that
an(x, t,Tk(ui,n),∇Tk(ui,n)) is a bounded sequence in
(Lψ(QT ))N ,and we obtain (5.18).
Proof of (5.19) :
Multiplying the approximating equation (5.7) by the
test function θm(ui,n) = Tm+1(ui,n)− Tm(ui,n)∫
Ω

Bi,m(x,ui,n(T ))dx+∫
QT

an(x, t,ui,n,∇ui,n)∇θm(ui,n)dxdt

+
∫
QT

φi,n(x, t,ui,n)∇θm(ui,n)dxdt (5.27)

+
∫
QT

fi,nθm(ui,n)dxdt ≤
∫
Ω

Bi,m(x,ui,0n)dx,

where Bi,m(x,r) =
∫ r

0
θm(s)

∂bi,n(x,s)
∂s

ds.

By (4.6),we have∫
QT

φi,n(x, t,ui,n)∇θm(ui,n)dxdt

≤
∫
m≤|ui,n |≤m+1

ψ(x,
β

ε
ψ−1
x ϕ(x, |ui,n|))dxdt

+ε
∫
m≤|ui,n |≤m+1

ϕ(x,∇θm(ui,n))dxdt

Also
∫
QT
fi,nθm(ui,n)dxdt ≥ 0 in view of (4.8).Then,

The same argument in step 2 , we obtain,∫
QT

ϕ(x,∇ui,n)dxdt

≤ Ci
(∫

m≤|ui,n |≤m+1
ψ(x,

β

ε
ψ−1ϕ(x, |ui,n|))dxdt

+
∫
Ω

Bi,m(x,ui,0n)dx
)

Where Ci = 1
αi−ε where 0 < ε < αi .

passing to limit as n → +∞ ,since the pointwise con-
vergence of ui,n and strongly convergence in L1(QT )
of Bi,m(x,ui,0n) we get

lim
n→+∞

∫
QT

ϕ(x,∇ui,n)dxdt

≤ Ci
(∫

m≤|ui |≤m+1
ψ(x,

β

ε
ψ−1
x ϕ(x, |ui |))dxdt

+
∫
Ω

Bi,m(x,ui,0)dx
)

By using Lebesgue’s theorem and passing to limit as
m→ +∞, in the all term of the right-hand side, we get

lim
m→+∞

lim
n→+∞

∫
m≤|ui |≤m+1

ϕ(x,∇ui,n)dxdt = 0 (5.28)

and the other hand, we have

lim
m→+∞

lim
n→+∞

∫
QT

φi,n(x, t,ui,n)∇θm(ui,n)dxdt

≤ lim
m→+∞

lim
n→+∞

∫
m≤|ui |≤m+1

ϕ(x,∇θm(ui,n))dxdt

+ lim
m→+∞

lim
n→+∞

∫
m≤|ui,n |≤m+1

ψ(x,φi,n(x, t,ui,n))dxdt

Using the pointwise convergence of ui,n and by
Lebesgue’s theorem,in the second term of the right
side ,we get

lim
n→+∞

∫
m≤|ui,n |≤m+1

ψ(x,φi,n(x, t,ui,n))dxdt

=
∫
m≤|ui |≤m+1

ψ(x,φi(x, t,ui))dxdt,

and also ,by Lebesgue’s theorem

lim
m→+∞

∫
m≤|ui |≤m+1

ψ(x,φi(x, t,ui))dxdt = 0 (5.29)

we obtain with (5.28) and (5.29),

lim
m→+∞

lim
n→+∞

∫
QT

φi,n(x, t,ui,n)∇θm(ui,n)dxdt = 0

then passing to the limit in (5.27), we get the (5.19).
Step 3: Let υi,j ∈ D(QT ) be a sequence such that υi,j →
ui in W 1,x

0 Lϕ(QT ) for the modular convergence.
This specific time regularization of Tk(υi,j ) (for fixed
k ≥ 0) is defined as follows.
Let (α

µ
i,0)µ be a sequence of functions defined on Ω

such that

α
µ
i,0 ∈ L

∞(Ω)∩W 1
0 Lϕ(Ω) for allµ > 0 (5.30)

‖αµi,0‖L∞(Ω) ≤ k for allµ > 0.

and α
µ
i,0 converges to Tk(ui,0) a.e. in Ω

and 1
µ‖α

µ
i,0‖ϕ,Ω converges to 0 µ→ +∞.

For k ≥ 0 and µ > 0, let us consider the unique solu-
tion (Tk(υi,j ))µ ∈ L∞(Q)∩W 1,x

0 Lϕ(QT ) of the monotone
problem:

∂(Tk(υi,j ))µ
∂t

+µ((Tk(υi,j ))µ − Tk(υi,j )) = 0 in D ′(Ω),

(5.31)
(Tk(υi,j ))µ(t = 0) = α

µ
i,0 in Ω. (5.32)

Remark that due to

∂(Tk(υi,j ))µ
∂t

∈W 1,x
0 Lϕ(QT ) (5.33)
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We just recall that,

(Tk(υi,j ))µ→ Tk(ui) a.e. in QT , weakly∗ in L∞(QT ),
(5.34)

(Tk(υi,j ))µ→ (Tk(ui))µ in W 1,x
0 Lϕ(QT ) (5.35)

for the modular convergence as j→ +∞.

(Tk(ui))µ→ Tk(ui) in W 1,x
0 Lϕ(QT ) (5.36)

for the modular convergence as µ→ +∞.

||(Tk(υi,j ))µ||L∞(QT ) ≤max(||(Tk(ui))||L∞(QT ), ||α
µ
0 ||L∞(Ω)) ≤ k

(5.37)
∀ µ > 0 ,∀ k > 0. Now, we introduce a sequence

of increasing C∞(R)-functions Sm such that, for any
m ≥ 1

Sm(r) = r for |r | ≤m, supp(S ′m) ⊂ [−(m+ 1), (m+ 1)],
(5.38)

‖S ′′m‖L∞(R) ≤ 1.

Through setting, for fixed K ≥ 0,

W n
i,j,µ = TK (ui,n)−TK (υi,j )µ and W n

i,µ = TK (ui,n)−TK (ui)µ
(5.39)

we obtain upon integration,

∫
QT

〈∂bi,Sm(ui,n)
∂t

,W n
i,j,µ

〉
dxdt

+
∫
QT

S ′m(ui,n)an(x,uni ,∇ui,n)∇W n
i,j,µ dxdt

+
∫
QT

S ′′m(ui,n)W n
i,j,µan(x,ui,n,∇ui,n)∇ui,n dxdt

+
∫
QT

Φi,n(x, t,ui,n)S ′m(ui,n)∇W n
i,j,µ dxdt

+
∫
QT

S ′′m(ui,n)W n
i,j,µΦi,n(x, t,ui,n)∇ui,n dxdt

+
∫
QT

fi,n(x,u1,n,u2,n)S ′m(ui,n)W n
i,j,µ dxdt = 0

(5.40)

Next we pass to the limit as n tends to +∞ , j tends
to +∞, µ tends to +∞ and then m tends to +∞, the
real number K ≥ 0 being kept fixed. In order to per-
form this task we prove below the following results

for fixed K ≥ 0:

liminf
µ→+∞

lim
j→+∞

lim
n→+∞

∫
QT

〈∂bi,Sm(ui,n)
∂t

,S ′m(ui,n)W n
i,j,µ

〉
≥ 0,

(5.41)

lim
µ→+∞

lim
j→+∞

lim
n→+∞

∫
QT

S ′n(ui,n)Φi,n(x, t,ui,n)∇W n
i,j,µ = 0,

(5.42)

lim
µ→+∞

lim
j→+∞

lim
n→+∞

∫
QT

S ′′m(ui,n)W n
i,µΦi,n(x, t,ui,n)∇ui,n = 0,

(5.43)

lim
m→+∞

lim
µ→+∞

lim
j→+∞

lim
n→+∞

∣∣∣∫
QT

S ′′m(ui,n)W n
i,j,µan(x, t,ui,n,∇ui,n)∇ui,n

∣∣∣ = 0,

(5.44)

lim
µ→+∞

lim
j→+∞

lim
n→+∞

∫
QT

fi,n(x,u1,n,u2,n)S ′m(ui,n)W n
i,j,µ = 0.

(5.45)

limsup
n→+∞

∫
QT

a(x, t,ui,n,∇TK (ui,n))∇TK (ui,n)dxdt

(5.46)

≤
∫
QT

Xi,K∇TK (ui)dxdt. (5.47)

∫
QT

[a(x, t,Tk(ui,n),∇Tk(ui,n))− a(x, t,Tk(ui,n),∇Tk(ui))]

[∇Tk(ui,n)−∇Tk(ui)]dxdt→ 0. (5.48)

Proof of (5.41):

Lemma 5.1∫
QT

〈∂bi,n(x,ui,n)
∂t

,S ′m(ui,n)W n
i,j,µ

〉
dxdt ≥ ε(n,j,µ,m),

(5.49)

See [23]. Proof of (5.42):
If we take n > m+ 1, we get

φi,n(x, t,ui,n)S ′m(ui,n) = φi(x, t,Tm+1(ui,n))S ′m(ui,n)

Using (4.6), we have:

ψ(φi,n(x, t,Tm+1(ui,n)S ′m(ui,n)) ≤ (m+1)ψ(φi(x, t,Tm+1(ui,n)))

≤ (m+ 1)ψ(‖c(x, t)‖L∞(QT )ψ
−1M(m+ 1))

Then φi,n(x, t,un)Sm(ui,n) is bounded in Lψ(QT ), thus,
by using the pointwise convergence of ui,n and
Lebesgue’s theorem we obtain φi,n(x, t,ui,n)Sm(ui,n)→
φi(x, t,ui)Sm(ui) with the modular convergence as
n→ +∞, then φi,n(x, t,ui,n)Sm(ui,n)→ φ(x, t,ui)Sm(ui)
for σ (

∏
Lψ ,

∏
Lϕ).

In the other hand ∇W n
i,j,µ = ∇Tk(ui,n) − ∇(Tk(υi,j ))µ

for converge to ∇Tk(ui) − ∇(Tk(υi,j ))µ weakly in
(Lϕ(QT ))N ,then∫

QT

φi,n(x, t,ui,n)Sm(ui,n)∇W n
i,j,µ dxdt

→
∫
QT

φi(x, t,ui)Sm(ui)∇Wi,j,µ dxdt
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as n→ +∞.
By using the modular convergence ofWi,j,µ as j→ +∞
and letting µ tends to infinity, we get (5.42).
Proof of (5.43):
For n > m+ 1 > k , we have ∇ui,nS ′′m(ui,n) = ∇Tm+1(ui,n)
a.e. in QT . By the almost every where conver-
gence of ui,n we have W n

i,j,µ→Wi,j,µ in L∞(QT ) weak-
* and since the sequence (φi,n(x, t,Tm+1(ui,n)))n con-
verge strongly in Eψ(QT ) then

φi,n(x, t,Tm+1(ui,n)) W n
i,j,µ→ φi(x, t,Tm+1(ui)) Wi,j,µ

converge strongly in Eψ(QT ) as n → +∞.By virtue of
∇Tm+1(un)→ ∇Tm+1(ui) weakly in (Lϕ(QT ))N as n→
+∞ we have∫
m≤|ui,n |≤m+1

φi,n(x, t,Tm+1(ui,n))∇ui,nS ′′m(ui,n)W n
i,j,µ dxdt

→
∫
m≤|ui |≤m+1

φ(x, t,ui))∇uiWi,j,µ dxdt

as n→ +∞
with the modular convergence of Wi,j,µ as j → +∞
and letting µ→ +∞ we get (5.43).
Proof of (5.44):
For any m ≥ 1 fixed, we have∣∣∣∫
QT

S ′′m(ui,n)an(x, t,ui,n,∇ui,n)∇ui,nW n
i,j,µ dxdt

∣∣∣
≤ ‖S ′′m‖L∞(R)‖W n

i,j,µ‖L∞(QT )

∫
{m≤|ui,n |≤m+1}

an(x, t,ui,n,∇ui,n)

×∇ui,n dxdt,

for anym ≥ 1, and any µ > 0. In view (5.37) and (5.38),
we can obtain

limsup
n→+∞

∣∣∣∫
QT

S ′′m(ui,n)an(x, t,ui,n,∇ui,n)∇ui,nW n
i,j,µ dxdt

∣∣∣
≤ 2Klimsup

n→+∞

∫
{m≤|ui,n |≤m+1}

an(x, t,ui,n,∇ui,n)∇ui,n dxdt,

(5.50)
for any m ≥ 1. Using (5.19) we pass to the limit as
m→ +∞ in (5.50) and we obtain (5.44).
Proof of (5.45):
For fixed n ≥ 1 and n > m+ 1, we have

f1,n(x,u1,n,u2,n)S ′m(u1,n)

= f1(x,Tm+1(u1,n),Tn(u2,n))S ′m(u1,n),

f2,n(x,u1,n,u2,n)S ′m(u2,n)

= f2(x,Tn(u1,n),Tm+1(u2,n))S ′m(u2,n),

In view (4.9),(4.10),(5.22) and Lebesgue’s the theorem
allow us to get, for

lim
n→+∞

∫
QT

fi,n(x,u1,n,u2,n)S ′m(ui,n)W n
i,j,µ dxdt

=
∫
QT

fi(x,u1,u2)S ′m(ui)Wi,j,µ dxdt

Using (5.35), we follow a similar way we get as j →
+∞,

lim
j→+∞

∫
QT

fi(x,u1,u2)S ′m(ui)Wi,j,µ dxdt

=
∫
QT

fi(x,u1,u2)S ′m(ui)(TK (ui)− TK (ui)µ)dxdt

we fixed m > 1, and using (5.36), we have

lim
µ→+∞

∫
QT

fi(x,u1,u2)S ′m(ui)(TK (ui)− TK (ui)µ)dxdt = 0

Then we conclude the proof of (5.45).
Proof of (5.46):
If we pass to the lim-sup when n ,j and µ tends to +∞
and then to the limit as m tends to +∞ in (5.40). We
obtain using (5.41)-(5.45), for any K ≥ 0,

lim
m→+∞

limsup
µ→+∞

limsup
j→+∞

limsup
n→+∞

∫
QT

S ′m(ui,n)an(x, t,ui,n,∇ui,n)

(
∇TK (ui,n)−∇TK (υi,j )µ

)
dxdt ≤ 0.

Since
S ′m(ui,n)an(x, t,ui,n,∇ui,n)∇TK (ui,n)

= an(x, t,ui,n,∇ui,n)∇TK (ui,n)

for n > K and K ≤m. Then, for K ≤m,

limsup
n→+∞

∫
QT

an(x, t,ui,n,∇ui,n)∇TK (ui,n)dxdt

≤ lim
m→+∞

limsup
µ→+∞

limsup
j→+∞

limsup
n→+∞

∫
QT

S ′m(ui,n)

an(x,ui,n,∇ui,n)∇TK (υi,j )µ dxdt.

(5.51)

Thanks to (5.38), we have in The right hand side of
(5.51), for n > m+ 1,

S ′m(ui,n)an(x, t,ui,n,∇ui,n)

= S ′m(ui,n)a
(
x, t,Tm+1(ui,n),∇Tm+1(ui,n)

)
a.e. in QT .

Using (5.18), and fixing m ≥ 1, we get

S ′m(ui,n)an(ui,n,∇ui,n)⇀S ′m(ui)Xi,m+1 weakly in (Lψ(QT ))N .

when n→ +∞ .
We pass to limit as j → +∞ and µ → +∞, and using
(5.35)-(5.36)

limsup
µ→+∞

limsup
j→+∞

limsup
n→+∞

∫
QT

S ′m(ui,n))an(x, t,ui,n

,∇ui,n))∇TK (υi,j )µ dxdt

=
∫
QT

S ′m(ui)Xi,m+1∇TK (ui)dxdt

=
∫
QT

Xi,m+1∇TK (ui)dxdt

(5.52)
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where K ≤m, since S ′m(r) = 1 for |r | ≤m.
On the other hand, for K ≤m, we have

a
(
x, t,Tm+1(ui,n),∇Tm+1(ui,n)

)
χ{|ui,n |<K}

= a
(
x, t,TK (ui,n),∇TK (ui,n)

)
χ{|ui,n |<K},

a.e. in QT . Passing to the limit as n→ +∞, we obtain

Xi,m+1χ{|ui |<K} = Xi,Kχ{|ui |<K} a.e. in QT −{|ui | = K} for K ≤ n.
(5.53)

Then

Xm+1∇TK (ui) = XK∇TK (ui) a.e. in QT . (5.54)

Then we obtain (5.46).
Proof of (5.48):
Let K ≥ 0 be fixed. Using (4.5) we have∫
QT

[
a(x, t,TK (ui,n),∇TK (ui,n))− a(x, t,TK (ui,n),∇TK (ui))

]
[
∇TK (ui,n)−∇TK (ui)

]
dxdt ≥ 0,

(5.55)
In view (1.1) and (5.22), we get

a(x, t,TK (ui,n),∇TK (ui))→ a(x, t,TK (ui),∇TK (ui)) a.e. in QT ,

as n→ +∞, and by (4.2) and Lebesgue’s theorem, we
obtain

a
(
x, t,TK (ui,n),∇TK (ui)

)
→ a

(
x, t,TK (ui),∇TK (ui)

)
(5.56)

strongly in (Lψ(QT ))N . Using (5.46), (5.22), (5.18)
and (5.56), we can pass to the lim-sup as n→ +∞ in
(5.55) to obtain (5.48).
To finish this step, we prove this Lemma:

Lemma 5.2 For i = 1,2 and fixed K ≥ 0, we have

Xi,K = a
(
xt, ,TK (ui),∇TK (ui)

)
a.e. in Q. (5.57)

Also, as n→ +∞,

a
(
x, t,TK (ui,n),∇TK (ui,n)

)
∇TK (ui,n)⇀a

(
x, t,TK (ui),DTK (ui)

)
∇TK (ui),

(5.58)
weakly in L1(QT ).

Proof of (5.57):
It’s easy to see that

an(x, t,TK (ui,n),ξ) = a(x, t,TK (ui,n),ξ) = aK (x, t,TK (ui,n),ξ)

a.e. in QT
for any K ≥ 0, any n > K and any ξ ∈RN .

In view of (5.18), (5.48) and (5.56) we obtain

lim
n→+∞

∫
QT

aK

(
x, t,TK (ui,n),∇TK (ui,n)

)
∇TK (ui,n)dxdt

=
∫
QT

Xi,K∇TK (ui)dxdt.

(5.59)

Since (1.1), (4.4) and (5.22), imply that the function
aK (x,s,ξ) is continuous and bounded with respect to
s. Then we conclude that (5.57).
Proof of (5.58):
Using (4.5) and (5.48), for any K ≥ 0 and any T ′ < T ,
we have[

a(x, t,TK (ui,n,∇TK (ui,n))− a(x, t,TK (ui,n),∇TK (u))
]

×
[
∇TK (ui,n)−∇TK (ui)

]
→ 0 (5.60)

strongly in L1(QT ′ ) as n→ +∞ .
On the other hand with (5.22), (5.18), (5.56) and
(5.57), we get

a
(
x, t,TK (ui,n),∇TK (ui,n)

)
∇TK (ui)

⇀a
(
x, t,TK (ui),∇TK (ui)

)
∇TK (ui)

weakly in L1(QT ),

a
(
x, t,TK (ui,n),∇TK (ui)

)
∇TK (ui,n)

⇀a
(
x, t,TK (ui),∇TK (ui)

)
∇TK (ui)

weakly in L1(QT ),

a
(
x, t,TK (ui,n),∇TK (ui)

)
∇TK (ui)

→ a
(
x, t,TK (ui),∇TK (ui)

)
∇TK (ui),

strongly in L1(Q), as n→ +∞.
It’s results from (5.60), for any K ≥ 0 and any T ′ < T ,

a
(
x, t,TK (ui,n),∇TK (ui,n)

)
∇TK (ui,n)

⇀a
(
x, t,TK (ui),∇TK (ui)

)
∇TK (ui) (5.61)

weakly in L1(QT ′ ) as n→ +∞.then for T ′ = T , we have
(5.58). Finally we should prove that ui satisfies (4.13).
Step 4:Pass to the limit.
we first show that u satisfies (4.13)∫
m≤|ui,n |≤m+1}

a(x, t,ui,n,∇ui,n)∇ui,n dxdt

=
∫
QT

an(x, t,ui,n,∇ui,n)
[
∇Tm+1(ui,n)−∇Tm(ui,n)

]
dxdt

=
∫
QT

an

(
x, t,Tm+1(ui,n),∇Tm+1(ui,n)

)
∇Tm+1(ui,n)dxdt

−
∫
QT

an

(
x, t,Tm(ui,n),∇Tm(ui,n)

)
∇Tm(ui,n)dxdt
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for n > m+ 1. According to (5.58), one can pass to the
limit as n→ +∞ ; for fixed m ≥ 0 to obtain

lim
n→+∞

∫
m≤|ui,n |≤m+1}

an(x, t,ui,n,∇ui,n)∇ui,n dxdt

=
∫
Q
a
(
x, t,Tm+1(ui),∇Tm+1(ui)

)
∇Tm+1(ui)dxdt

−
∫
Q
a
(
x, t,Tm(ui),∇Tm(ui)

)
∇Tm(ui)dxdt

=
∫
m≤|ui |≤m+1}

a(x, t,ui ,∇ui)∇ui dxdt

(5.62)
Pass to limit as m tends to +∞ in (5.62) and using
(5.19) show that ui satisfies (4.13).

Now we shown that ui to satisfy (4.14)and (4.15).
Let S be a function inW 2,∞(R) such that S ′ has a com-
pact support. Let K be a positive real number such
that suppS ′ ⊂ [−K,K]. the Pointwise multiplication of
the approximate equation (1.1) by S ′(ui,n) leads to

∂Bni,S (ui,n)

∂t
−div

(
S ′(ui,n)an(x,ui,n,∇ui,n)

)
+ S ′′(ui,n)an(x,ui,n,∇ui,n)∇ui,n

−div
(
S ′(ui,n)Φi,n(x, t,ui,n)

)
+ S ′′(ui,n)Φi,n(x, t,ui,n)∇ui,n
= fi,n(x,u1,n,u1,n)S ′(ui,n)

(5.63)

in D ′(QT ), for i = 1,2.
Now we pass to the limit in each term of (5.63).

Limit of
∂Bni,S (ui,n)

∂t : Since Bni,S (ui,n) converges to Bi,S (ui)
a.e. in QT and in L∞(QT ) weak ? and S is bounded

and continuous. Then
∂Bni,S (ui,n)

∂t converges to ∂bi,S (ui )
∂t in

D ′(QT ) as n tends to +∞.

Limit of div
(
S ′(ui,n)an(x, t,ui,n,∇ui,n)

)
: Since

suppS ′ ⊂ [−K,K], for n > K , we have

S ′(ui,n)an(x, t,ui,n,∇ui,n)

= S ′(ui,n)an
(
x, t,TK (ui,n),∇TK (ui,n)

)
a.e. in QT . Using the pointwise convergence of ui,n

, (5.38),(5.18) and (5.57), imply that

S ′(ui,n)an
(
x, t,TK (ui,n),∇TK (ui,n)

)
⇀S ′(ui)a

(
x, t,TK (ui),∇TK (ui)

)
weakly in (Lψ(QT ))N , for σ (ΠLψ ,ΠEϕ) as n → +∞,
since S ′(ui) = 0 for |ui | ≥ K a.e. in QT . And

S ′(ui)a
(
x, t,TK (ui),∇TK (ui)

)
= S ′(ui)a(x, t,ui ,∇ui)

a.e. in QT .

Limit of S ′′(ui,n)an(x, t,ui,n,∇ui,n)∇ui,n. Since
suppS ′′ ⊂ [−K,K], for n > K , we have

S ′′(ui,n)an(x, t,ui,n,∇ui,n)∇ui,n

= S ′′(ui,n)an
(
x, t,TK (ui,n),∇TK (ui,n)

)
∇TK (ui,n) a.e. in QT .

The pointwise convergence of S ′′(ui,n) to S ′′(ui) as
n→ +∞, (5.38) and (5.58) we have

S ′′(ui,n)an(x, t,ui,n,∇ui,n)∇ui,n

⇀S ′′(ui)a
(
x, t,TK (ui),∇TK (ui)

)
∇TK (ui)

weakly in L1(QT ), as n→ +∞, and

S ′′(ui)a
(
x, t,TK (ui),∇TK (ui)

)
∇TK (ui)

= S ′′(ui)a(x, t,ui ,∇ui)∇ui a.e.in QT .

Limit of S ′(ui,n)Φi,n(x, t,ui,n): We have

S ′(ui,n)Φi,n(x, t,ui,n)

= S ′(ui,n)Φi,n(x, t,TK (ui,n))

a.e.in QT , Since suppS ′ ⊂ [−K,K].Using (4.5), (5.24)
and (5.16), it’s easy to see that
S ′(ui,n)Φi,n(x, t,ui,n)⇀S ′(ui)Φi(x, t,TK (ui)) weakly for
σ (ΠLψ ,ΠLϕ) as n → +∞. And S ′(ui)Φi(x, t,TK (ui)) =
S ′(ui)Φi(x, t,ui) a.e. in QT .
Limit of S ′′(ui,n)Φi,n(x, t,ui,n)∇ui,n: Since S ′ ∈
W 1,∞(R) with suppS ′ ⊂ [−K,K], we have
S ′′(ui,n)Φi,n(x, t,ui,n)∇ui,n = Φi,n(x, t,TK (ui,n))∇S ′(TK (ui,n))
a.e. in QT . The weakly convergence of truncation al-
lows us to prove that

S ′′(ui,n)Φi,n(x, t,ui,n)∇ui,n⇀ Φi(x, t,ui)∇S ′(ui),

strongly in L1(QT ).

Limit of fi,n(x,u1,n,u2,n)S ′(ui,n): Using (4.9), (4.10),
(5.4) and (5.5), we have
fi,n(x,u1,n,u2,n)S ′(ui,n) → fi(x,u1,u2)S ′(ui) strongly in
L1(QT ), as n→ +∞.
It remains to show that for i=1,2 BS (x,ui) satisfies the
initial condition (4.15).
To this end, firstly remark that, in view of the defini-
tion of S ′ϕ , we have Bϕ(x,ui,n) is bounded in L∞(QT ).

Secondly, by (5.41) we show that
∂Bϕ(x,ui,n)

∂t
is

bounded in L1(QT ) + W −1,xLψ(QT )). As a conse-
quence, an Aubin’s type Lemma (see e.g., [11], Corol-
lary 4) implies that Bϕ(x,ui,n) lies in a compact set of
C0([0,T ];L1(Ω)) .
It follows that, on one hand,Bϕ(x,ui ,n)(t = 0) con-
verges to Bϕ(x,ui)(t = 0) strongly in L1(Ω). On
the order hand, the smoothness of Bϕ imply that
Bϕ(x,ui,n)(t = 0) converges to Bϕ(x,ui)(t = 0) strongly
in L1(Ω), we conclude that Bϕ(x,ui,n)(t = 0) =
Bϕ(x,ui,0n) converges to Bϕ(x,ui)(t = 0) strongly in
L1(Ω), we obtain Bϕ(x,ui)(t = 0) = Bϕ(x,ui,0) a.e. in Ω

and for all M > 0, now letting M to +∞, we conclude
that b(x,ui)(t = 0) = b(x,ui,0) a.e. in Ω.

As a conclusion, the proof of Theorem (5.1) is com-
plete.
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